

WRF verification in Niger and Burkina Faso

Rakiswende Thomas Bere, Younoussa Adamou Sayri, Francesco Pasi, Vieri Tarchiani and Valerio Capecchi

Contents

- 1. (iii) Context
- 2. Methods
- 3. Results
- 4. Conclusions & Perspectives

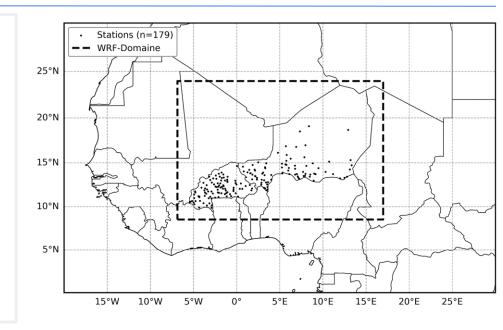
Context: General

- Intensification of precipitation in the Sahel (Panthou et al., 2018; Massazza et al., 2021; Chagnaud et al., 2022)
- Flood risk has increased exponentially in the Sahel (Wilcox et al., 2018; Elagib et al., 2021; Fiorillo et al., 2018).
- Early warning systems (EWS) constitute a key tool for risk reduction and adaptation (Sendai Framework, 2015–2030)
- Regional NWP play a key role, although their deployment remains limited due to lack of financial and computational resources
 (Parker et al., 2021; Lamptey et al., 2024; Vogel et al., 2020)

Context: objectives

General Objective

To evaluate the performance of three numerical weather prediction systems (GFS, WRF-BF, and WRF-NI) in simulating daily rainfall during the monsoon season (JAS 2023–2024) over the Sahelian region


Specific Objectives

- © Compare the ability of the three models to reproduce observed daily rainfall distributions.
- Assess their systematic biases, especially the drizzle bias and the underestimation of intense rainfall events.
- **Evaluate** their spatial skill

Methods: WRF Model setup

- Initial data: operational GFS (Global Forecasting System from NCEP) at 0.25 deg;
- 36 hr simulation starting at 18:00 UTC;
- Period:
 - hindcast: JAS 2023 and JAS 2024;

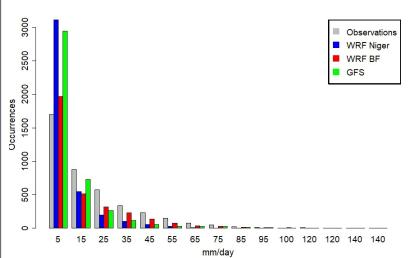
Parameterizations	BURKINA	NIGER
Microphysics	Thompson	WSM6
Cumuls	0	New Tiedtke Scheme
Boundary layer	MYJ	YSU
Radiation	RRTMG	RRTMG

Methods: Model Evaluation Framework

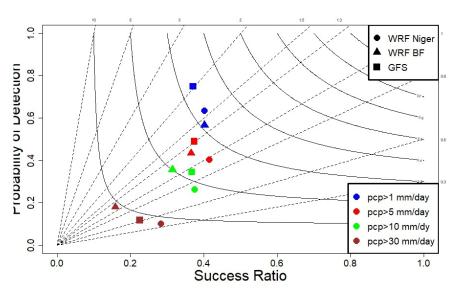
1. Point-Based Evaluation

- **Data**: Ground observations from Burkina Faso and Niger(JAS 2023 & 2024)
- Methods:
 - Probability Density Function (PDF)
 - Taylor Diagram
 - Performance Diagram

Complementary approaches

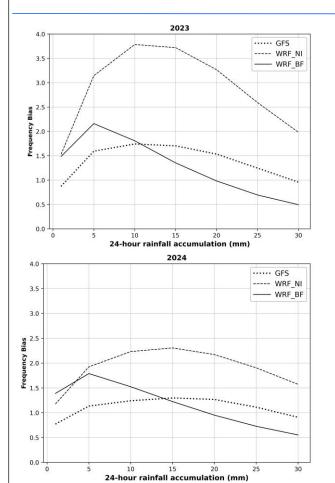

2. Spatial Evaluation

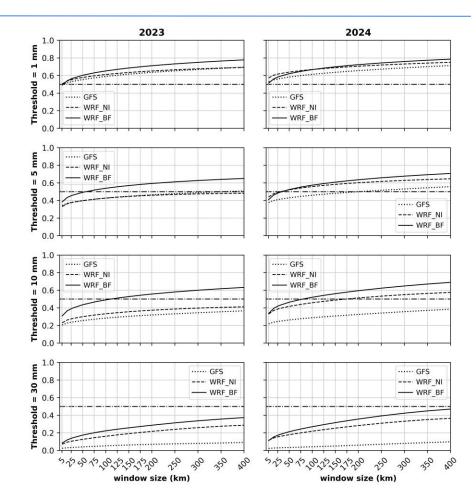
- **Data:** CHIRPS satellite rainfall fields
- Methods:
 - Frequency Bias
 - Fraction skill scores
 (absolute and percentile thresholds)


Results: (a) Model vs Rain Gauges

probability density of observed daily precipitation compared to forecasts

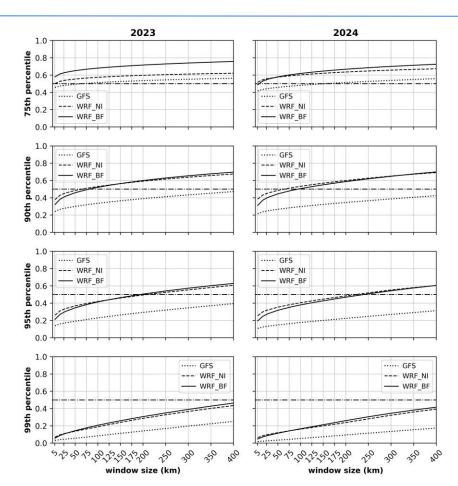
drizzle bias (Gutowski et al. 2003; Lazoglou et al., n.d.)


significant underestimation of moderate precipitation events (10–30 mm) and heavy events (> 30 mm)



skill decreases rapidly when the precipitation threshold increases. The WRF models (both Niger and Burkina-Faso versions) are better than GFS for most thresholds, however all model data display common biases: an overestimation of low to moderate precipitation and a marked underestimation of intense events.

Results: (b) Model vs Gridded obs



Results: (c) Model vs Gridded obs

FSS / with window size

FSS \ with threshold

WRF_BF ≈ WRF_NI

Conclusion and Perspectives

Key Findings

- WRF models (WRF-BF and WRF-NI) outperform GFS for most rainfall thresholds
- All models exhibit a **drizzle bias** overestimation of light rainfall and underestimation of heavy events.
- WRF-BF shows the best agreement with observations in both temporal and spatial analyses.

Implications

- Confirms the added value of regional downscaling for Sahelian rainfall forecasts.
- Provides scientific evidence supporting the operational use of WRF within the SLAPIS early-warning system
- Offers guidance for improving model configuration and forecast calibration in future operations.

Next Steps

- Refine physical parameterizations (microphysics, convection).
- Apply bias correction and machine learning post-processing.
- Strengthen collaboration between ANAM-BF, DMN Niger, and CNR-LaMMA.

Thank You

